All Article Properties:
{
"access_control": false,
"status": "publish",
"objectType": "Article",
"id": "1075177",
"signature": "Article:1075177",
"url": "https://staging.dailymaverick.co.za/article/2021-10-25-perseverances-first-major-successes-on-mars-an-update-from-mission-scientists/",
"shorturl": "https://staging.dailymaverick.co.za/article/1075177",
"slug": "perseverances-first-major-successes-on-mars-an-update-from-mission-scientists",
"contentType": {
"id": "1",
"name": "Article",
"slug": "article"
},
"views": 0,
"comments": 0,
"preview_limit": null,
"excludedFromGoogleSearchEngine": 0,
"title": "Perseverance’s first major successes on Mars – an update from mission scientists",
"firstPublished": "2021-10-25 19:54:55",
"lastUpdate": "2021-10-25 19:54:55",
"categories": [
{
"id": "1215",
"name": "Magazine",
"signature": "Category:1215",
"slug": "magazine",
"typeId": {
"typeId": "1",
"name": "Daily Maverick",
"slug": "",
"includeInIssue": "0",
"shortened_domain": "",
"stylesheetClass": "",
"domain": "staging.dailymaverick.co.za",
"articleUrlPrefix": "",
"access_groups": "[]",
"locale": "",
"preview_limit": null
},
"parentId": null,
"parent": [],
"image": "",
"cover": "",
"logo": "",
"paid": "0",
"objectType": "Category",
"url": "https://staging.dailymaverick.co.za/category/magazine/",
"cssCode": "",
"template": "default",
"tagline": "",
"link_param": null,
"description": "",
"metaDescription": "",
"order": "0",
"pageId": null,
"articlesCount": null,
"allowComments": "1",
"accessType": "freecount",
"status": "1",
"children": [],
"cached": true
},
{
"id": "1825",
"name": "Maverick Life",
"signature": "Category:1825",
"slug": "maverick-life",
"typeId": {
"typeId": "1",
"name": "Daily Maverick",
"slug": "",
"includeInIssue": "0",
"shortened_domain": "",
"stylesheetClass": "",
"domain": "staging.dailymaverick.co.za",
"articleUrlPrefix": "",
"access_groups": "[]",
"locale": "",
"preview_limit": null
},
"parentId": null,
"parent": [],
"image": "",
"cover": "",
"logo": "",
"paid": "0",
"objectType": "Category",
"url": "https://staging.dailymaverick.co.za/category/maverick-life/",
"cssCode": "",
"template": "default",
"tagline": "",
"link_param": null,
"description": "",
"metaDescription": "",
"order": "0",
"pageId": null,
"articlesCount": null,
"allowComments": "1",
"accessType": "freecount",
"status": "1",
"children": [],
"cached": true
}
],
"content_length": 7007,
"contents": "<span style=\"font-weight: 400;\">At the moment, Mars and the Earth are on opposite sides of the Sun, and the two planets cannot communicate with each other. After working nonstop for the past 216 Martian days, the science teams are taking the first real break since the mission started.</span>\r\n\r\n<span style=\"font-weight: 400;\">We are </span><a href=\"https://mars.nasa.gov/people/profile/?id=22881#bio\"><span style=\"font-weight: 400;\">two</span></a> <a href=\"https://www.eaps.purdue.edu/people/profile/briony.html\"><span style=\"font-weight: 400;\">members</span></a><span style=\"font-weight: 400;\"> of the Perseverance team, and with the rover </span><a href=\"https://mars.nasa.gov/mars2020/mission/status/337/hunkering-down-for-solar-conjunction/\"><span style=\"font-weight: 400;\">hunkered down</span></a><span style=\"font-weight: 400;\"> for the </span><a href=\"https://mars.nasa.gov/all-about-mars/night-sky/solar-conjunction/\"><span style=\"font-weight: 400;\">20 days of conjunction</span></a><span style=\"font-weight: 400;\">, it is the perfect time to step back and reflect on the mission thus far.</span>\r\n\r\n<span style=\"font-weight: 400;\">Perseverance has tested out all of its engineering capabilities, driven </span><a href=\"https://mars.nasa.gov/mars2020/mission/where-is-the-rover/\"><span style=\"font-weight: 400;\">1.6 miles (2.6 kilometers)</span></a><span style=\"font-weight: 400;\"> over rough terrain and taken </span><a href=\"https://mars.nasa.gov/mars2020/multimedia/raw-images/\"><span style=\"font-weight: 400;\">tens of thousands of photos</span></a><span style=\"font-weight: 400;\"> with its </span><a href=\"https://doi.org/10.1007/s11214-020-00765-9\"><span style=\"font-weight: 400;\">19 cameras</span></a><span style=\"font-weight: 400;\">. Of all of these incredible successes, there are three major milestones that we’re particularly excited about: collecting the first rock core samples, flying the Ingenuity helicopter and publishing our first scientific results about the Jezero Crater delta.</span>\r\n\r\n<strong>Return shipping</strong>\r\n\r\n<span style=\"font-weight: 400;\">One of Perseverance’s primary objectives is to use its </span><a href=\"https://mars.nasa.gov/resources/25005/mars-2020-perseverance-rover-sample-caching-system/\"><span style=\"font-weight: 400;\">sample caching system</span></a><span style=\"font-weight: 400;\"> to extract small rock cores – roughly the size of dry-erase markers – and seal them in special sample tubes. A future mission will then pick them up and bring them on a long, interplanetary journey back to Earth.</span>\r\n\r\n<span style=\"font-weight: 400;\">For Perserverance’s first drilling attempt in August, our team picked a nice flat rock that was easy to access with the drill. After six days of assessing the bedrock – and finally drilling into it – we were thrilled to see a hole in the ground and get confirmation that the sample tube had sealed successfully. However, the next day the rover sent photos of the inside of the tube, and we saw it was actually empty. Some of Mars’ atmosphere is trapped inside and will be useful to study, but it’s not what the team was hoping for.</span>\r\n\r\n<span style=\"font-weight: 400;\">Ultimately, our team concluded that the rock itself was much softer than expected and it was completely pulverized during the act of drilling.</span>\r\n\r\n<span style=\"font-weight: 400;\">Three weeks and 1,800 feet (550 meters) later, we came across some promising-looking rocks protruding up above the red surface. This suggested that the rocks were harder and therefore easier to take a sample of. This time Perseverance successfully extracted and stored two core samples from the grayish, wind-polished rock. After collecting up to a few dozen more, it will drop the samples at a safe and easily accessible location on Mars’ surface. NASA’s </span><a href=\"https://www.jpl.nasa.gov/missions/mars-sample-return-msr\"><span style=\"font-weight: 400;\">Mars Sample Return</span></a><span style=\"font-weight: 400;\"> mission, which is currently in development, will pick up the sample tubes in the late 2020s and bring them home.</span>\r\n\r\n<span style=\"font-weight: 400;\">But scientists don’t have to wait that long to learn about the rocks. At both sites, Perseverance used the </span><a href=\"https://mars.nasa.gov/mars2020/spacecraft/instruments/sherloc/\"><span style=\"font-weight: 400;\">SHERLOC</span></a><span style=\"font-weight: 400;\"> and </span><a href=\"https://mars.nasa.gov/mars2020/spacecraft/instruments/pixl/\"><span style=\"font-weight: 400;\">PIXL</span></a><span style=\"font-weight: 400;\"> spectrometers on its arm to measure the composition of the rocks. We found crystalline minerals that suggest the rocks formed in a basaltic lava flow, as well as salt minerals that could be </span><a href=\"https://mars.nasa.gov/news/9036/nasas-perseverance-rover-collects-puzzle-pieces-of-mars-history/\"><span style=\"font-weight: 400;\">evidence of ancient groundwater</span></a><span style=\"font-weight: 400;\">.</span>\r\n\r\n<iframe title=\"YouTube video player\" src=\"https://www.youtube.com/embed/wMnOo2zcjXA\" width=\"853\" height=\"480\" frameborder=\"0\" allowfullscreen=\"allowfullscreen\"><span data-mce-type=\"bookmark\" style=\"display: inline-block; width: 0px; overflow: hidden; line-height: 0;\" class=\"mce_SELRES_start\"></span></iframe>\r\n\r\n<strong>First in flight</strong>\r\n\r\n<span style=\"font-weight: 400;\">Perseverance may be a long way from Earth, but it has a sidekick. The </span><a href=\"https://mars.nasa.gov/technology/helicopter/#Overview\"><span style=\"font-weight: 400;\">Ingenuity helicopter</span></a><span style=\"font-weight: 400;\"> detached from the rover shortly after they landed on Mars and became the first craft to fly in the atmosphere of another planet.</span>\r\n\r\n<span style=\"font-weight: 400;\">Ingenuity is solar powered, weighs </span><a href=\"https://mars.nasa.gov/technology/helicopter/#Tech-Specs\"><span style=\"font-weight: 400;\">4 pounds (1.8 kg)</span></a><span style=\"font-weight: 400;\">, and its main body is roughly the size of a grapefruit. On April 19, 2021, the helicopter took its first flight, hovering 10 feet (3 meters) above the ground for 39 seconds before coming straight down. This short hop showed that its long blades could generate enough lift to allow flight in Mars’ thin air.</span>\r\n\r\n<span style=\"font-weight: 400;\">The next flights tested the helicopter’s ability to move horizontally, and it covered longer distances each time, traveling as much as </span><a href=\"https://mars.nasa.gov/technology/helicopter/#Flight-Log\"><span style=\"font-weight: 400;\">2,050 feet (625 meters)</span></a><span style=\"font-weight: 400;\"> in its farthest trip to date.</span>\r\n\r\n<span style=\"font-weight: 400;\">Ingenuity has now flown 13 times and has captured detailed photos of the ground to scout out the rough terrain ahead of Perseverance. These images are helping the team decide how to navigate around obstacles on the way toward the rover’s eventual destination, a large delta in Jezero Crater.</span>\r\n\r\n<strong>Zooming into the Jezero delta</strong>\r\n\r\n<span style=\"font-weight: 400;\">NASA selected </span><a href=\"https://theconversation.com/bringing-mars-rocks-back-to-earth-on-feb-18-perseverance-rover-landed-safely-on-mars-a-lead-scientist-explains-the-tech-and-goals-153851\"><span style=\"font-weight: 400;\">Jezero Crater as Perseverance’s landing site</span></a><span style=\"font-weight: 400;\"> specifically because it gives the rover access to a large stack of rocks that sits at the end of a dry river valley. Based on </span><a href=\"https://www.jpl.nasa.gov/images/jezero-craters-ancient-lakeshore\"><span style=\"font-weight: 400;\">satellite images</span></a><span style=\"font-weight: 400;\">, scientists think that these rocks are made of sediment deposited by an ancient river that flowed into a lake roughly </span><a href=\"https://mars.nasa.gov/mars2020/mission/science/landing-site/\"><span style=\"font-weight: 400;\">3.5 billion years ago</span></a><span style=\"font-weight: 400;\">. If true, this location could have been an excellent environment for life.</span>\r\n\r\n<span style=\"font-weight: 400;\">However, the resolution of the satellite data isn’t high enough to say for sure whether the sediments were deposited slowly into a long-lived lake or whether the structure formed under drier conditions. The only way to know with certainty was to take images from the surface of Mars.</span>\r\n\r\n<p><img loading=\"lazy\" class=\"size-full wp-image-1075184\" src=\"https://www.dailymaverick.co.za/wp-content/uploads/2021/10/GettyImages-1231268923.jpeg\" alt=\"\" width=\"1024\" height=\"574\" /> In this concept illustration provided by NASA, NASA's Ingenuity Mars Helicopter stands on the Red Planet's surface as NASA's Mars 2020 Perseverance rover (partially visible on the left) rolls away. (Photo illustration by NASA via Getty Images)</p>\r\n\r\n<span style=\"font-weight: 400;\">Perseverance </span><a href=\"https://www.nasa.gov/image-feature/jpl/welcome-to-octavia-e-butler-landing\"><span style=\"font-weight: 400;\">landed</span></a><span style=\"font-weight: 400;\"> over a mile (roughly 2 kilometers) away from the cliffs at the front of the delta. We are both on the team in charge of the </span><a href=\"https://mastcamz.asu.edu/\"><span style=\"font-weight: 400;\">Mastcam-Z</span></a><span style=\"font-weight: 400;\"> instrument, a set of cameras with zoom lenses that would allow us to see a paper clip from the opposite side of a football field. During the first few weeks of the mission, we used Mastcam–Z to survey the distant rocks. From those panoramic views, we selected specific spots to look at in more detail with the rover’s </span><a href=\"https://supercam.cnes.fr/en/supercam-and-its-super-sensors\"><span style=\"font-weight: 400;\">SuperCam</span></a><span style=\"font-weight: 400;\">, a telescopic camera.</span>\r\n\r\n<span style=\"font-weight: 400;\">When the images got back to Earth, we saw tilted layers of sediments in the lower parts of the 260-foot-tall (80 meters) cliffs. Toward the top we spotted boulders, some as large as 5 feet (1.5 meters) across.</span>\r\n\r\n<span style=\"font-weight: 400;\">From the structure of these formations, our team has been able to reconstruct a geological story billions of years old, which we </span><a href=\"https://www.science.org/doi/10.1126/science.abl4051\"><span style=\"font-weight: 400;\">published</span></a><span style=\"font-weight: 400;\"> in the journal Science on Oct. 7, 2021.</span>\r\n\r\n<span style=\"font-weight: 400;\">For a long time – potentially millions of years – a river flowed into a lake that filled Jezero Crater. This river slowly deposited the tilted layers of sediment we see in the cliffs of the delta. Later on, the river became mostly dry except for a few big flooding events. These events had enough energy to carry big rocks down the river channel and deposit them on top of the older sediment; these are the boulders we see atop the cliffs now.</span>\r\n\r\n<span style=\"font-weight: 400;\">Since then, the climate has been arid and winds have slowly been eroding away the rock.</span>\r\n\r\n<span style=\"font-weight: 400;\">Confirming that there was a lake in Jezero Crater is the first major science result of the mission. In the coming year, Perseverance will drive up to the top of the delta, studying the rock layers in microscopic detail along the way and collecting many samples. When those samples eventually make their way to Earth, we will learn if they contain signs of microbial life that may once have thrived in this ancient lake on Mars. </span><b>DM/ML <iframe src=\"https://counter.theconversation.com/content/168730/count.gif?distributor=republish-lightbox-advanced\" width=\"1\" height=\"1\"></iframe></b>\r\n\r\n<a href=\"https://theconversation.com/perseverances-first-major-successes-on-mars-an-update-from-mission-scientists-168730\"><span style=\"font-weight: 400;\">This story was first published in</span><i><span style=\"font-weight: 400;\"> The Conversation.</span></i></a>\r\n\r\n<i><span style=\"font-weight: 400;\">Melissa Rice is an associate professor of Planetary Science at Western Washington University. Briony Horgan is an associate professor of Planetary Science at Purdue University.</span></i>",
"teaser": "Perseverance’s first major successes on Mars – an update from mission scientists",
"externalUrl": "",
"sponsor": null,
"authors": [
{
"id": "244501",
"name": "Melissa Rice and Briony Horgan",
"image": "",
"url": "https://staging.dailymaverick.co.za/author/melissa-rice-and-briony-horgan/",
"editorialName": "melissa-rice-and-briony-horgan",
"department": "",
"name_latin": ""
}
],
"description": "",
"keywords": [
{
"type": "Keyword",
"data": {
"keywordId": "7428",
"name": "Geology",
"url": "https://staging.dailymaverick.co.za/keyword/geology/",
"slug": "geology",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "Geology",
"translations": null
}
},
{
"type": "Keyword",
"data": {
"keywordId": "13459",
"name": "Mars",
"url": "https://staging.dailymaverick.co.za/keyword/mars/",
"slug": "mars",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "Mars",
"translations": null
}
},
{
"type": "Keyword",
"data": {
"keywordId": "347704",
"name": "aliens",
"url": "https://staging.dailymaverick.co.za/keyword/aliens/",
"slug": "aliens",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "aliens",
"translations": null
}
},
{
"type": "Keyword",
"data": {
"keywordId": "354977",
"name": "Delta",
"url": "https://staging.dailymaverick.co.za/keyword/delta/",
"slug": "delta",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "Delta",
"translations": null
}
},
{
"type": "Keyword",
"data": {
"keywordId": "360760",
"name": "Rocks",
"url": "https://staging.dailymaverick.co.za/keyword/rocks/",
"slug": "rocks",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "Rocks",
"translations": null
}
},
{
"type": "Keyword",
"data": {
"keywordId": "360761",
"name": "Jezero crater",
"url": "https://staging.dailymaverick.co.za/keyword/jezero-crater/",
"slug": "jezero-crater",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "Jezero crater",
"translations": null
}
},
{
"type": "Keyword",
"data": {
"keywordId": "360762",
"name": "Ingenuity",
"url": "https://staging.dailymaverick.co.za/keyword/ingenuity/",
"slug": "ingenuity",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "Ingenuity",
"translations": null
}
},
{
"type": "Keyword",
"data": {
"keywordId": "360763",
"name": "Mars 2020",
"url": "https://staging.dailymaverick.co.za/keyword/mars-2020/",
"slug": "mars-2020",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "Mars 2020",
"translations": null
}
},
{
"type": "Keyword",
"data": {
"keywordId": "360764",
"name": "Perseverance Rover",
"url": "https://staging.dailymaverick.co.za/keyword/perseverance-rover/",
"slug": "perseverance-rover",
"description": "",
"articlesCount": 0,
"replacedWith": null,
"display_name": "Perseverance Rover",
"translations": null
}
}
],
"short_summary": null,
"source": null,
"related": [],
"options": [],
"attachments": [
{
"id": "108459",
"name": "UNSPECIFIED: In this concept illustration provided by NASA, NASA's Ingenuity Mars Helicopter stands on the Red Planet's surface as NASA's Mars 2020 Perseverance rover (partially visible on the left) rolls away. NASA's Perseverance (Mars 2020) rover will store rock and soil samples in sealed tubes on the planet's surface for future missions to retrieve in the area known as Jezero crater on the planet Mars. A key objective for Perseverance's mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet's geology and past climate, paving the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith. (Photo illustration by NASA via Getty Images)",
"description": "<span style=\"font-weight: 400;\">At the moment, Mars and the Earth are on opposite sides of the Sun, and the two planets cannot communicate with each other. After working nonstop for the past 216 Martian days, the science teams are taking the first real break since the mission started.</span>\r\n\r\n<span style=\"font-weight: 400;\">We are </span><a href=\"https://mars.nasa.gov/people/profile/?id=22881#bio\"><span style=\"font-weight: 400;\">two</span></a> <a href=\"https://www.eaps.purdue.edu/people/profile/briony.html\"><span style=\"font-weight: 400;\">members</span></a><span style=\"font-weight: 400;\"> of the Perseverance team, and with the rover </span><a href=\"https://mars.nasa.gov/mars2020/mission/status/337/hunkering-down-for-solar-conjunction/\"><span style=\"font-weight: 400;\">hunkered down</span></a><span style=\"font-weight: 400;\"> for the </span><a href=\"https://mars.nasa.gov/all-about-mars/night-sky/solar-conjunction/\"><span style=\"font-weight: 400;\">20 days of conjunction</span></a><span style=\"font-weight: 400;\">, it is the perfect time to step back and reflect on the mission thus far.</span>\r\n\r\n<span style=\"font-weight: 400;\">Perseverance has tested out all of its engineering capabilities, driven </span><a href=\"https://mars.nasa.gov/mars2020/mission/where-is-the-rover/\"><span style=\"font-weight: 400;\">1.6 miles (2.6 kilometers)</span></a><span style=\"font-weight: 400;\"> over rough terrain and taken </span><a href=\"https://mars.nasa.gov/mars2020/multimedia/raw-images/\"><span style=\"font-weight: 400;\">tens of thousands of photos</span></a><span style=\"font-weight: 400;\"> with its </span><a href=\"https://doi.org/10.1007/s11214-020-00765-9\"><span style=\"font-weight: 400;\">19 cameras</span></a><span style=\"font-weight: 400;\">. Of all of these incredible successes, there are three major milestones that we’re particularly excited about: collecting the first rock core samples, flying the Ingenuity helicopter and publishing our first scientific results about the Jezero Crater delta.</span>\r\n\r\n<strong>Return shipping</strong>\r\n\r\n<span style=\"font-weight: 400;\">One of Perseverance’s primary objectives is to use its </span><a href=\"https://mars.nasa.gov/resources/25005/mars-2020-perseverance-rover-sample-caching-system/\"><span style=\"font-weight: 400;\">sample caching system</span></a><span style=\"font-weight: 400;\"> to extract small rock cores – roughly the size of dry-erase markers – and seal them in special sample tubes. A future mission will then pick them up and bring them on a long, interplanetary journey back to Earth.</span>\r\n\r\n<span style=\"font-weight: 400;\">For Perserverance’s first drilling attempt in August, our team picked a nice flat rock that was easy to access with the drill. After six days of assessing the bedrock – and finally drilling into it – we were thrilled to see a hole in the ground and get confirmation that the sample tube had sealed successfully. However, the next day the rover sent photos of the inside of the tube, and we saw it was actually empty. Some of Mars’ atmosphere is trapped inside and will be useful to study, but it’s not what the team was hoping for.</span>\r\n\r\n<span style=\"font-weight: 400;\">Ultimately, our team concluded that the rock itself was much softer than expected and it was completely pulverized during the act of drilling.</span>\r\n\r\n<span style=\"font-weight: 400;\">Three weeks and 1,800 feet (550 meters) later, we came across some promising-looking rocks protruding up above the red surface. This suggested that the rocks were harder and therefore easier to take a sample of. This time Perseverance successfully extracted and stored two core samples from the grayish, wind-polished rock. After collecting up to a few dozen more, it will drop the samples at a safe and easily accessible location on Mars’ surface. NASA’s </span><a href=\"https://www.jpl.nasa.gov/missions/mars-sample-return-msr\"><span style=\"font-weight: 400;\">Mars Sample Return</span></a><span style=\"font-weight: 400;\"> mission, which is currently in development, will pick up the sample tubes in the late 2020s and bring them home.</span>\r\n\r\n<span style=\"font-weight: 400;\">But scientists don’t have to wait that long to learn about the rocks. At both sites, Perseverance used the </span><a href=\"https://mars.nasa.gov/mars2020/spacecraft/instruments/sherloc/\"><span style=\"font-weight: 400;\">SHERLOC</span></a><span style=\"font-weight: 400;\"> and </span><a href=\"https://mars.nasa.gov/mars2020/spacecraft/instruments/pixl/\"><span style=\"font-weight: 400;\">PIXL</span></a><span style=\"font-weight: 400;\"> spectrometers on its arm to measure the composition of the rocks. We found crystalline minerals that suggest the rocks formed in a basaltic lava flow, as well as salt minerals that could be </span><a href=\"https://mars.nasa.gov/news/9036/nasas-perseverance-rover-collects-puzzle-pieces-of-mars-history/\"><span style=\"font-weight: 400;\">evidence of ancient groundwater</span></a><span style=\"font-weight: 400;\">.</span>\r\n\r\n<iframe title=\"YouTube video player\" src=\"https://www.youtube.com/embed/wMnOo2zcjXA\" width=\"853\" height=\"480\" frameborder=\"0\" allowfullscreen=\"allowfullscreen\"><span data-mce-type=\"bookmark\" style=\"display: inline-block; width: 0px; overflow: hidden; line-height: 0;\" class=\"mce_SELRES_start\"></span></iframe>\r\n\r\n<strong>First in flight</strong>\r\n\r\n<span style=\"font-weight: 400;\">Perseverance may be a long way from Earth, but it has a sidekick. The </span><a href=\"https://mars.nasa.gov/technology/helicopter/#Overview\"><span style=\"font-weight: 400;\">Ingenuity helicopter</span></a><span style=\"font-weight: 400;\"> detached from the rover shortly after they landed on Mars and became the first craft to fly in the atmosphere of another planet.</span>\r\n\r\n<span style=\"font-weight: 400;\">Ingenuity is solar powered, weighs </span><a href=\"https://mars.nasa.gov/technology/helicopter/#Tech-Specs\"><span style=\"font-weight: 400;\">4 pounds (1.8 kg)</span></a><span style=\"font-weight: 400;\">, and its main body is roughly the size of a grapefruit. On April 19, 2021, the helicopter took its first flight, hovering 10 feet (3 meters) above the ground for 39 seconds before coming straight down. This short hop showed that its long blades could generate enough lift to allow flight in Mars’ thin air.</span>\r\n\r\n<span style=\"font-weight: 400;\">The next flights tested the helicopter’s ability to move horizontally, and it covered longer distances each time, traveling as much as </span><a href=\"https://mars.nasa.gov/technology/helicopter/#Flight-Log\"><span style=\"font-weight: 400;\">2,050 feet (625 meters)</span></a><span style=\"font-weight: 400;\"> in its farthest trip to date.</span>\r\n\r\n<span style=\"font-weight: 400;\">Ingenuity has now flown 13 times and has captured detailed photos of the ground to scout out the rough terrain ahead of Perseverance. These images are helping the team decide how to navigate around obstacles on the way toward the rover’s eventual destination, a large delta in Jezero Crater.</span>\r\n\r\n<strong>Zooming into the Jezero delta</strong>\r\n\r\n<span style=\"font-weight: 400;\">NASA selected </span><a href=\"https://theconversation.com/bringing-mars-rocks-back-to-earth-on-feb-18-perseverance-rover-landed-safely-on-mars-a-lead-scientist-explains-the-tech-and-goals-153851\"><span style=\"font-weight: 400;\">Jezero Crater as Perseverance’s landing site</span></a><span style=\"font-weight: 400;\"> specifically because it gives the rover access to a large stack of rocks that sits at the end of a dry river valley. Based on </span><a href=\"https://www.jpl.nasa.gov/images/jezero-craters-ancient-lakeshore\"><span style=\"font-weight: 400;\">satellite images</span></a><span style=\"font-weight: 400;\">, scientists think that these rocks are made of sediment deposited by an ancient river that flowed into a lake roughly </span><a href=\"https://mars.nasa.gov/mars2020/mission/science/landing-site/\"><span style=\"font-weight: 400;\">3.5 billion years ago</span></a><span style=\"font-weight: 400;\">. If true, this location could have been an excellent environment for life.</span>\r\n\r\n<span style=\"font-weight: 400;\">However, the resolution of the satellite data isn’t high enough to say for sure whether the sediments were deposited slowly into a long-lived lake or whether the structure formed under drier conditions. The only way to know with certainty was to take images from the surface of Mars.</span>\r\n\r\n[caption id=\"attachment_1075184\" align=\"aligncenter\" width=\"1024\"]<img class=\"size-full wp-image-1075184\" src=\"https://www.dailymaverick.co.za/wp-content/uploads/2021/10/GettyImages-1231268923.jpeg\" alt=\"\" width=\"1024\" height=\"574\" /> In this concept illustration provided by NASA, NASA's Ingenuity Mars Helicopter stands on the Red Planet's surface as NASA's Mars 2020 Perseverance rover (partially visible on the left) rolls away. (Photo illustration by NASA via Getty Images)[/caption]\r\n\r\n<span style=\"font-weight: 400;\">Perseverance </span><a href=\"https://www.nasa.gov/image-feature/jpl/welcome-to-octavia-e-butler-landing\"><span style=\"font-weight: 400;\">landed</span></a><span style=\"font-weight: 400;\"> over a mile (roughly 2 kilometers) away from the cliffs at the front of the delta. We are both on the team in charge of the </span><a href=\"https://mastcamz.asu.edu/\"><span style=\"font-weight: 400;\">Mastcam-Z</span></a><span style=\"font-weight: 400;\"> instrument, a set of cameras with zoom lenses that would allow us to see a paper clip from the opposite side of a football field. During the first few weeks of the mission, we used Mastcam–Z to survey the distant rocks. From those panoramic views, we selected specific spots to look at in more detail with the rover’s </span><a href=\"https://supercam.cnes.fr/en/supercam-and-its-super-sensors\"><span style=\"font-weight: 400;\">SuperCam</span></a><span style=\"font-weight: 400;\">, a telescopic camera.</span>\r\n\r\n<span style=\"font-weight: 400;\">When the images got back to Earth, we saw tilted layers of sediments in the lower parts of the 260-foot-tall (80 meters) cliffs. Toward the top we spotted boulders, some as large as 5 feet (1.5 meters) across.</span>\r\n\r\n<span style=\"font-weight: 400;\">From the structure of these formations, our team has been able to reconstruct a geological story billions of years old, which we </span><a href=\"https://www.science.org/doi/10.1126/science.abl4051\"><span style=\"font-weight: 400;\">published</span></a><span style=\"font-weight: 400;\"> in the journal Science on Oct. 7, 2021.</span>\r\n\r\n<span style=\"font-weight: 400;\">For a long time – potentially millions of years – a river flowed into a lake that filled Jezero Crater. This river slowly deposited the tilted layers of sediment we see in the cliffs of the delta. Later on, the river became mostly dry except for a few big flooding events. These events had enough energy to carry big rocks down the river channel and deposit them on top of the older sediment; these are the boulders we see atop the cliffs now.</span>\r\n\r\n<span style=\"font-weight: 400;\">Since then, the climate has been arid and winds have slowly been eroding away the rock.</span>\r\n\r\n<span style=\"font-weight: 400;\">Confirming that there was a lake in Jezero Crater is the first major science result of the mission. In the coming year, Perseverance will drive up to the top of the delta, studying the rock layers in microscopic detail along the way and collecting many samples. When those samples eventually make their way to Earth, we will learn if they contain signs of microbial life that may once have thrived in this ancient lake on Mars. </span><b>DM/ML <iframe src=\"https://counter.theconversation.com/content/168730/count.gif?distributor=republish-lightbox-advanced\" width=\"1\" height=\"1\"></iframe></b>\r\n\r\n<a href=\"https://theconversation.com/perseverances-first-major-successes-on-mars-an-update-from-mission-scientists-168730\"><span style=\"font-weight: 400;\">This story was first published in</span><i><span style=\"font-weight: 400;\"> The Conversation.</span></i></a>\r\n\r\n<i><span style=\"font-weight: 400;\">Melissa Rice is an associate professor of Planetary Science at Western Washington University. Briony Horgan is an associate professor of Planetary Science at Purdue University.</span></i>",
"focal": "50% 50%",
"width": 0,
"height": 0,
"url": "https://dmcdn.whitebeard.net/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg",
"transforms": [
{
"x": "200",
"y": "100",
"url": "https://dmcdn.whitebeard.net/i/pVlCt6RBjk97SWOvvXs4ArmE7vU=/200x100/smart/filters:strip_exif()/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg"
},
{
"x": "450",
"y": "0",
"url": "https://dmcdn.whitebeard.net/i/28wvRn5rvws7WXGRWX-i3YjNBgc=/450x0/smart/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg"
},
{
"x": "800",
"y": "0",
"url": "https://dmcdn.whitebeard.net/i/TgIs15eUGODAWI5gWjfEJAX5SyQ=/800x0/smart/filters:strip_exif()/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg"
},
{
"x": "1200",
"y": "0",
"url": "https://dmcdn.whitebeard.net/i/Uq-7aKba9TNoiMSEsA4tPh6CoZM=/1200x0/smart/filters:strip_exif()/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg"
},
{
"x": "1600",
"y": "0",
"url": "https://dmcdn.whitebeard.net/i/6DPWxJTeJO4L0LznNq0BHYH07pA=/1600x0/smart/filters:strip_exif()/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg"
}
],
"url_thumbnail": "https://dmcdn.whitebeard.net/i/pVlCt6RBjk97SWOvvXs4ArmE7vU=/200x100/smart/filters:strip_exif()/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg",
"url_medium": "https://dmcdn.whitebeard.net/i/28wvRn5rvws7WXGRWX-i3YjNBgc=/450x0/smart/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg",
"url_large": "https://dmcdn.whitebeard.net/i/TgIs15eUGODAWI5gWjfEJAX5SyQ=/800x0/smart/filters:strip_exif()/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg",
"url_xl": "https://dmcdn.whitebeard.net/i/Uq-7aKba9TNoiMSEsA4tPh6CoZM=/1200x0/smart/filters:strip_exif()/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg",
"url_xxl": "https://dmcdn.whitebeard.net/i/6DPWxJTeJO4L0LznNq0BHYH07pA=/1600x0/smart/filters:strip_exif()/file/dailymaverick/wp-content/uploads/2021/10/GettyImages-1231262958.jpeg",
"type": "image"
}
],
"summary": "In the short time since NASA’s Perseverance rover landed in Mars’ Jezero Crater on Feb. 18, 2021, it’s already made history.",
"template_type": null,
"dm_custom_section_label": null,
"elements": [],
"seo": {
"search_title": "Perseverance’s first major successes on Mars – an update from mission scientists",
"search_description": "<span style=\"font-weight: 400;\">At the moment, Mars and the Earth are on opposite sides of the Sun, and the two planets cannot communicate with each other. After working nonstop for the past 216 Marti",
"social_title": "Perseverance’s first major successes on Mars – an update from mission scientists",
"social_description": "<span style=\"font-weight: 400;\">At the moment, Mars and the Earth are on opposite sides of the Sun, and the two planets cannot communicate with each other. After working nonstop for the past 216 Marti",
"social_image": ""
},
"cached": true,
"access_allowed": true
}